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Using the necessary and sufficient conditions in terms of the high-field series 
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1. INTRODUCTION AND SUMMARY 

Over the past few decades, the idea of using the spatial dimension, d, as a 
continuous variable to facilitate the study of the spin-l/2 Ising model 
(among others) has gained a considerable popularity. For example, Fisher 
and Gaunt (l) computed a series in ( l / d )  for the critical temperature. 
Further studies were made by Abe, (2) again based on (1/d) expansions. An 
additional line of work using this idea was the powerful computational 
device (3) in the renormalization group theory of critical phenomena (4) in 
which the critical exponents were expanded in powers of 4-d. These various 
techniques depend implicitly on the idea that the sought quantities are 
analytic in d over a suitable region. Studies have been carried out which 
show that the ( l / d )  expansions are likely to be at best asymptotic, (5) and 
that the (4-d) expansions are at best asymptotic. (6) Nevertheless, the 
possibility remains that these series are still summable. 

Surprisingly little attention has been paid, to date, to the nature of 
these models in noninteger dimensional spaces. Wilson (7) has stated that 
these spaces are embeddable in an infinite-dimensional space, however, as 
we shall see, not in the usual sense. In this paper we will investigate some 
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aspects of the nature of the spin-1/2 Ising model in noninteger dimensional 
space. The famous Yang-Lee theorem ~8) on the location of zeros of the 
partition function has been proven to hold over a wide class of Ising and 
Ising-like ferromagnetic models. ~9) In the second section we discuss how 
this theorem implies a family of inequalities which are satisfied by the 
coefficients in the high-magnetic field series expansion. In order to  apply 
these inequalities we derive in the third section the appropriate expansion 
coefficients through eighth order in general dimension. To make connection 
with the analytic continuation in d used in the (4-d) expansions, which at 
first sight appears to be a different one, we explore in Section 4 the relation 
between it and the "natural" continuation used in Section 3 and we find 
that they are in fact the same. In our fifth section, we give a detailed report 
of the regions of validity and failure which we have found for the inequali- 
ties which follow from the Yang-Lee theorem. It appears from the behavior 
of our results with the number of series coefficients used that, given enough 
series terms, the failure of the Yang-Lee theorem would be universal, 
except for (i) arbitrary dimension and infinite temperature, and (ii) arbi- 
trary temperature and integer dimension. In our sixth section we look at the 
radius of convergence of the high-field series and find that the nature of 
failure of the Yang-Lee theorem is such that the radius of convergence 
decreases well below the Yang-Lee theorem lower bound of unity. Finally, 
in the last section we present a speculative picture of the Ising model in 
noninteger dimension, in which the critical point is thought of as a spinodal 
point and the phase-boundaries beyond which it lies have vanishing singu- 
larities in integer dimensions. 

2. CONSEQUENCES OF THE YANG-LEE THEOREM 

In this section we review some consequences of the Yang-Lee theorem 
which can be explicitly tested in low-order perturbation theory. The Yang-  
Lee theorem ~8) states that if we have a partition function, 

[,~'~=1Jij~i~j i~l IH=I z=f...fexp + hidPi dpi(d?i ) (2.1) 
i i 

where J/j 1> 0, then Z v ~ 0 whenever Re h i > 0 or Re h i < 0 for all i, and dv is 
a suitable measure. When all h i = h, n is finite, and dv = �89 + 1)+ 
8(~ - 1)] (spin-I/2 Ising model) then (enhZ) is a polynomial in ~t = e -2h, 
and consequently has all its zeros on the unit circle in the complex/~-plane. 
One of the most general proofs of this theorem is due to Lieb and Sokal, ~9~ 
where they show that the requirement, 

f eh'~dYi(d?)--/=O, Reh ~ 0, a l l /  (2.2) 

is sufficient to prove the Yang-Lee theorem. In this paper we will be 
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concerned with a model which can be defined for any h, Ihl < m. That 
means for us that both the integrals (2.1) and (2.2) are absolutely conver- 
gent for any such h. In order for (2.1) to converge with a nonzero Jo" dp 
must decay for large q~ at least as fast as exp[- (A0)  2] for some A. Thus the 
rate of increase of Z can be no faster than exp[nBh 2] for some B. 
According to Hadamard's factorization theorem (1~ we can write 

Z(h)=ensh+nth2jH=l((1--~j)exp[~j+l(~j)2]} (2.3) 

For this general class of models we can follow the procedures of 
Baker (n) and Bessis et al. (12) We have directly from (2.3) 

1 l n Z ( h ) =  sh + th2+ 2s + g2h2)- g2h2] (2.4) 

where don is a nonnegative Stieltjes measure which gives the contributions 
of each zero hj appearing in (2.3), and G < ~ as Z(0) v ~ 0. Use has been 
made in writing (2.4) of the fact that (2.1) is real for real h so the zeros of 
(2.3) appear in pairs, hj and - h j .  The magnetization per spin can now be 
written as 

I(h) - nl O lnZ(h)0h - 2th - 4h 3f0 Gdp~(g) 1 +g4g 2h2 (2.5) 

and we have set s = 0 because 1(0) = 0 for the temperature higher than the 
critical temperature which is the case we wish to consider. 

The next step is to introduce a mapping of the h plane so that we can 
put I, or something closely related, in the form of a series of Stieltjes. (13) In 
the applications (spin-I/2 Ising model) we wish to consider, we will know 
the behavior of I as a power series in/~, and at least in integer dimensions 
this power series is known to converge in any compact subset of 1/~1 < 1. 
The order of Z as a function of /t, by the bound on the growth in h 
obtained above, is zero. Thus Hadamard's factorization theorem gives 

e"hZ(#) = I~ (1 - ~//-ti) (2.6) 
i = 1  

where I/~il = 1, and Z(1) v ~ 0. The analog of (2.4) is 

--1 lnZ(/.t) = - h  + (~ ln ( / t  2 - 2/tcosO + 1) dg(O) (2.7) 
/'/ dOo 

where g(O) is a positive measure since it is the density of zeros on the unit 
circle V and 19 0 > 0, at least for finite n, as Z(1)r 0. The intensity of 
magnetization is 

OlnZ(h) 
= 2 (1  - ~ 2 ) ( ~  ~ ag(O) ( 2 . 8 )  1 

I(/z) = n Oh at% 1 - 2~cos19 +/~2 
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We use the facts that  there are exactly n zeros and  that  if/~i is a zero so is 
/~*. In  the limit as n ~ ~ ,  we have  the normal iza t ion  

1 (2 .9 )  
fo~ dg(O) - 2 

In  this fo rm of I(/~) we make  the substitution, 

4/~ 
v - - sech2h = 1 - tanh2h 

(1 + / 0  2 (2.10) 

~ = [ 2 -  v -  2(1 - v) i /2] lv  

which yields 

1/2 l' ~ dg(O) (2.11) 
s ( o  = 2(1 - v) Je0 

1 v cos2(O/2)  

Thus  as (1 - v) WE = tanhh ,  

I(v)  r162 d~ (w) (2.12) 
tanh  h - a0 1 - vw 

which is of the fo rm of a series of Stieltjes of - v  with a radius of 
convergence greater  than  or equal to unity. W e  remark  that  as long as we 
retain the Taylor  series in /~ property ,  the general  case (2.3)-(2.5) can  be 
reduced to the fo rm 

I(v)  r dql(w) 
- C -  VJoD (2.13) 

t a n h h  TzT  
where D < 1, and  C is a constant.  

A series of Stieltjes is any  funct ion which can be represented as 

i(x)= foo"-' d (w) 
j=0  1 + xw 

where, clearly R is a lower b o u n d  on the radius of convergence,  and  R = 0 
is allowed. M a n y  propert ies  of these functions are described in the litera- 
ture.(13) Fo r  our purposes,  the following results will suffice: it is necessary 
and  sufficient that  

det f ~ '  ~ L+I . . . . .  fm+n. > 

D(m,n)  = O, m = O, 1 
n = 0 , 1 , 2  . . . .  

ft.+n, L + . + , , ' ' ' ,  L+2. l 
(2.15) 

hold for f (x )  to be  of fo rm (2.14), 0 < R ~< m.  Fur thermore ,  if we restrict 
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R >/ 1, and define 

A"fm = An- l fm  -- A n - T m + l  , AOfm= fm (2.16) 

then it is also necessary and sufficient that (14) the sequence (f,,} is totally 
monotone, i.e., 

A'fm >1 0 all m,n (2.17) 

In the case that only f0, �9 . . ,  fe are available, it suffices to check 

APf0/> 0, AP-[f, I> O , . . . ,  A%/> 0 (2.18) 

If we find a violation of (2.15) or (2.18) in the series coefficients of 
(2.12), then it cannot be a series of Stieltjes and hence the Yang-Lee 
theorem will necessarily fail for that case. 

3, THE HIGH-FIELD EXPANSION IN GENERAL DIMENSION 

We need for this work, the expansion of the magnetization I (# ,  u) for 
the spin- l /2  Ising model in arbitrary (integer for now) dimension in powers 
of/z for fixed u where we pick 

I t  = e - 2 h ,  u = e - 4 K  (3.1) 

and the Hamiltonian is 

Z =  

Fortunately, most of the work for this project has been done. We can 
deduce from (2.7) of Baker (15) the expansion for general d through f17 for 
the hypercubic lattice system 

l n Z = x  1 -  ~ k + l  f lkxk (3.3) 
k>~l 

where 

x = �89 - Q'i)) (3.4) 

By standard theory, (16) the coefficients in (3.3) can be used to give 

z I - l 
This equation can be reverted to give 

I = (Pi) = 1 - 2x (3.6) 

as a series in z with coefficients which depend on u. It is convenient in this 
work to use Mayer's f,  

f =  u - l -  1 (3.7) 
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as a variable. We find 
3 1  ~ - -  

3 2  ~ - -  - -  - -  

3 3  ~ - -  

/ 3 5  = - -  

3 6  = - - - 

3 7  ~ - -  

+ 

l+2df 

1 3df2 2 
1 4(2d)f4 -~ + 2df 2 + ~ df 3 + 

lOdf3-[ 3--~ d+ 20(d)]fo-40(d2)f5 (3.8) 

1 +4df3+I42d+36(d)]f4+ [T252d+240(d) J f5 

+ [276(d)+ 96( 3 d) If6+ [ 12(d)+ 72(d)]fT, 

l[35d+28(d)]f4-[168d+560(d)]f5 6 
-[154d+ 1932(d)+ 672( d) Jf6-[1764(d)+ 2184(d)]f7 

-[238(d) + l176(d)]f 8+ 56(d)f 9 

++[lOd+8(d)Jf4+[216d+640(d)]f 5 

I660d + 5520(d)+ 1920(d) ] f 6 

+ [490 if2 d + 13680(d) + 14880(d)] f v 

+ [ 11748(2d)+ 27696(d) + 5184(d)]f 8 

+ [2832(2d)+ 13120(d) + 6400(4d) ] f9 

+ [48( 2d)+144( 3d)+ 2560(4d) ] f'~ + 96(d) f , ,+ 8( 3 d) f,2 

where (~) is the standard binomial coefficient. We remark that to compute 
/37, in addition to the d~, s given in (2.10) of Baker (15) we have required d~o,2, 
dll,3, and d12,4 which we were able to supply without the need for further 
lattice embedding data. 

Without going into detail (17) we give the usual revision for (3.5) as 
x = ~ jbjz j (3.9) 

j ~ > l  
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where 
j - I  1 (jflk).k j -  1 

jbj = 7 E H ~ E k n ~ = j -  1 (3.10) 
nk k = 1 n k [  ' k =  1 

As an illustration, the first few values of (3.10) are 

1 - b l = l  

2- b 2 =/31 

3b 3 = /3  2 + 3 137 (3.11) 

4b4 = f13 + 4fl~ f12 + 8 f13 
. . . 

It  is interesting to note from the structure of the coefficients that 
divergence can occur as T ~  0, i.e,, u--> 0 for noninteger values of d. To see 
this result, we consider the D-dimensional unit hypercube. It has 2 D vertices 
and D2 D-I edges and so will first appear (d) times as a term in /~2 o and 
contribute a n f  D2~-' to this irreducible cluster sum. From (3.9) and (3.5) we 
will have, overall, for u ~ 0 

o - '  

Of course, for integer d < D the coefficient in (3.12) vanishes so no trouble 
arises. However, if d < �89 and not an integer, then (3.12) is a divergent 
contribution as u ~ 0 .  It is evident from f0 finite that this result is a 
violation of (2.17) and so would imply that the Yang-Lee theorem must fail 
at least by about the 22dth term for any noninteger d. In fact this result, as 
we will see later, is just illustrative of much more extensive failures. 

We remark that (3.12) is also suggestive in regard to the radius of 
convergence of the/ ,  series, though without an analysis of possible cancella- 
tions it is not possible to do better. The dominant contributions to the 
coefficient o f / ,2o  for small enough u will be highly compact  clusters of 
which the hypercube is an example. For d a fixed noninteger, and D very 
large (a)  o: d! D -a  with a coefficient which is related to the deviation of d 
from an integer. The Cauchy nth root test applied to (3.12) yields u D/2-a as 
an estimate of the radius of convergence of the # series which goes to zero 
as D --> c~ for any u < 1 ! The rate here is logarithmically slow in order, so it 
might be very difficult to observe numerically. 

4. DIMENSIONAL CONTINUATION 

In the previous section we saw that the coefficients, which are valid in 
arbitrary integer dimension, only contain d in simple polynomial expres- 
sions. The natural dimensional continuation which suggests itself is just to 
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use those same polynomial expressions in arbitrary noninteger dimension as 
well. Manifestly this continuation is not unique as P(d) and P(d) + sinvrd 
are both analytic in d and agree for d integer. In this section we investigate 
some other methods of analytic continuation which have been used to see 
how they relate to the polynomial method. 

First there is the fractal method of approaching noninteger dimension. 
In the studies (18) that we know of, the fractal lattice is defined as a limiting 
process, embedded in some Euclidean space of dimension d E > d, which 
proceeds through a sequence of finite systems of sites and bonds. In each 
case, every member of this limiting process is an Ising model within the 
scope of Section 2. Hence, by standard limiting arguments, the Yang-Lee 
theorem must hold for these fractal models. To anticipate the results of 
subsequent sections, since the Yang-Lee theorem fails for the polynomial 
dimensional continuation in noninteger dimension, fractal continuation is 
definitely a different continuation. 

In the e-expansion calculations of the renormalization group theory of 
critical phenomena, e = 4 -  d where d is the spatial dimension. Here 
dimensional continuation is based on the analytic continuation of two types 
of integrals.(J9'2~ First 

I1_ 1 f ddk f(kZ)= Kds (4.1) 
(2~r) d 

where 

K a = [ 2 d- '~r a/2F(�89 ]-~ (4.2) 

with F(n) the gamma function. Second, 

12 _ (2rr) a l  fadk f(k2,k" kl ) 

1 - 2rr K'~-lJo~dkJo ~dOkd-'(sinO)d--J(kz'k'kc~ (4.3) 
/ ' f  9~,  , 

In fact, examination of the integrals to which (4.1) and (4.3) are applied 
shows that they are always of the form 

M N 
I - 1 + oo 1 (4.4) 

(2~r)a f_ "'' f j~=, ddkj,.~=, 

where the D i are positive-definite, quadratic forms in the kj. These qua- 
dratic forms are composed only of vector inner products (no cross- 
products, etc.) and hence decompose as 

d 

Di = 2 @ i ( k l  " e  . . . . . .  k m . e , )  ( 4 . 5 )  
- r= l  
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where e~ are the d unit vectors in the coordinate directions. Irrespective of 
what we plan to  do about dimensional continuation, we can use the 
identity, 

l=s a > O  (4.6) 

to rewrite (4.4) as 

1 [-+oo ( 1"~ ddk( ~ f exp (4.7) . . . . . .  I I  dxi - E xiOi 
I - -  (2,n.)d j _  ~ a j = l  2"/0 i=1 i=1 

At this point we remark that form (4.7) is now adapted to the "product 
method" of dimensional continuation. For this we interchange the order of 
the x and k integrations and obtain, by (4.5) 

-- 1 oo N t s  M 
f 

I (2~.)ds ""fi=~ldXi__)2""fj~=id(kj'eO 

E 1t •  - ~ x i |  1 .e  1 . . . . .  k re.el)  
i = l  

(4.8) 
which extends in an obvious way to nonintegral dimension. The Wilson 
prescription (4.1)-(4.3) is actually equivalent. To see this we first note that 
(4.1) follows from (4.3) if k 1 = 0 as 

Jo("dO(sinO)d-2=N F ( � 8 9  (4.9) r(�89 
by Pierce's Tables (20 #484. Then if we begin to integrate (4.7) by the 
Wilson method we get, concentrating on k s first, 

fo " f ,_  x'f-+f " f 
(4.1o) 

1 K ~ N . . + ~  M 

• e~,qcosO+ C) (4.11) 

where A and B depend on the x/ only and C depends on the x; and kj, 
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j = 2 . . . . .  M. If we compute the O integral (22) we obtain, valid for 
noninteger d, 

N 

I =  - ~  Ka_,~rl/2F(�89 - 1 ) ) s  �9 �9 " fi=IIl dx i 

M 

X ~ +~ . . . (" IT dak  ( ~  dk,k(/2 
. , - o o  J j = 2  JJo 

e C 
X Id/2 _, (Bk,  q)exp( - A k 2) (4.12) 

(�89 a/2-1 

Now performing the integral over k I we get (23) (again valid for noninte- 
gral d) 

N M exp(B 2qa/4A + C) 
, CrI xi; + ; n . <4,3) . . . .  r  dakj 

- - , = ~  . , ~  _ ] 2 ( ~ r A ) l / 2 / d  

which we can directly verify is the same result as is obtained by the direct 
use of (4.8) and doing the integral over k 1. However, the form (4.13) is, in 
so far as the integrals over the k's are concerned, the same as (4.7) except 
there is one less integral to do. Thus by M repeated applications of the 
above steps we concluded that the Wilson method of dimensional contin- 
uation is equivalent to the product method. 

We next illustrate that the product method is equivalent to the polyno- 
mial method. It is convenient to do so for the lattice-cutoff commutator. It 
is 

C _  l ~ d ( d ) -1 1-2Ky cosO,,=, , (4.14) 

By the product method (24) Eq. (4.14) becomes immediately, as outlined 
above ,  (22) 

C = s  Io(2Kx ) ]d dx (4.15) 

which becomes, on expansion in K followed by integration term by term, 

c = 1 + 2 d K :  + 6 ( 2 a  2 - a)K  4 + 2 0 ( 6 d  3 - 9 a  2 + 4g)K 6 + �9 �9 �9 (4.16) 

The product method always generates polynomial coefficients through the 
application of the bionomial expansion theorem to the expanded form of 
[ ]d in (4.8). Thus the Wilson prescription is actually equivalent to the 
polynomial continuation which we adopt in this study. 
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5, RIGOROUS NUMERICAL RESULTS 

In Section 2 we saw that, as a consequence of the Yang-Lee theorem, 
the magnetization per spin, I, in a spin- l /2  Ising model gives rise to a 
function I ( v ) / ( 1 -  v) 1/2 which, for fixed u, has the form of a series of 
Stieltjes [see Eq. (2.12)] with a radius of convergence greater than or equal 
to unity. We have constructed (along the lines of Sections 3 and 4) the 
power series in v (through order v 8) representing this function for general 
dimension d (integer and noninteger) and fixed u, and we have checked to 
see whether these power series were indeed appropriate series of Stieltjes. 
The important checks were provided by the properties indicated in Eqs. 
(2.15) and (2.18). 

We find that the power series are in all probability not series of Stieltjes 
for any noninteger d and any u v a 1. Our reasons for this claim are the 
following: 

(i) It can be shown analytically that 

D(0, 1) = det f~ 

_ u 2a 1 - 1 ] 1 

Using the simple fact that u = e In", we have the following: 

D(O, I) = - -U  kt - 1 
k=O 

k=0 k! 1 (5.3) 

and so 

[In(I /u)]  k U2 d oo D(0, 1)= T (2d)k- 2a] = k!  ( 5 . 4 )  

This power series has an infinite radius of convergence for finite d. Since 
for 0 < u < l  and 0 < d <  1/2 each term in the series is negative, we 
conclude that 

D(O, 1 ) < O  for O < u <  1 and O < d <  1/2 (5.5) 

In a similar way, starting from 

D(0, 1) - u 2 d - 1  8 ( [ u l - 2 a - u ] - ( 2 a ) [ 1 - u ] )  (5.6) 
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one finds that 

D ( 0 , 1 ) < 0  for l < u < ~  and 0 < d <  1/2 (5.7) 

Results (5.5) and (5.7) clash with property (2.15). Equation (5.7) is not 
particularly surprising, as u > 1 is the antiferromagnetic case. Interestingly, 
(5.5) and (5.7) correspond to one of the fundamental inequalities given by 
Beckenback and Bellman. (25) 

(ii) For d > 1/2 and u < 1 we ran careful numerical checks of 
properties (2.15) and (2.18), and we find that one or both of them are not 
satisfied for practically any u when d < 1.3 (except, of course, for d = 1). 

The detailed results of our numerical checks are represented in Fig. 1. 
In the regions of u -d  space labeled by integerj the firstj  coefficients of the 
power series under study fail to satisfy at least one property of series of 
Stieltjes while in those same regions the first ( j -  1) coefficients satisfy all 
properties of series of Stieltjes that we could think of. For example, in the 
part of Fig. 1 labeled 5 condition (2.18) fails for fo, f l ,  f2, f3, and f4 while 
both condition (2.15) and condition (2.18) hold for f0, f l ,  f2, and f3. 

(iii) From Fig. 1 it seems very likely that if we had more terms in the 
power series of interest, we would find more extended regions of u -d  space 
in which the power series fails to be a series of Stieltjes. 

Fig. 1. 

i I I I 6 I 9 9 1 )  / 

U 7 

io-I 

i 

10-2 _ 

3 

10-3 

10-4 -- 

10-5 _ 

I I 
0 .2 .4 .6 .8 1.0 1.2 1.4 

d 

Regions of the u - d  space in which I ( v ) / ( 1  - v) l/2 is found not to be a series of 
Stieltjes. In these regions the Yang-Lee theorem breaks down. 
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These results prove rigorously that the standard "nonfractal" continua- 
tion of the spin-1/2 Ising model to noninteger dimensions fails to preserve 
the Yang-Lee theorem. 

It is interesting to note that for d < 1 the "determinantal" property 
(2.15) is the sensitive indicator, and it determines all boundaries in Fig. 1 
except for the one between j = 5 and 6. On the other hand, for d > 1 and 
u < 0.15 the "finite difference" property (2.18) is the more sensitive indi- 
cator. 

We have also checked the possibility that I(v)/tanhh will assume the 
form presented in Eq. (2.13): in other words, we studied the power series in 
v representing 

F =  l[v tanhl(V)h C] (5.8) 

for different dimensions and u < 1. Using the properties (2.15) and (2.18), 
extensive numerical work led us to conclude that for u < 1 and noninteger 
dimensions the power series representing F are also not series of Stieltjes. 
The detailed results of this work appear in Fig. 2, which is to be interpreted 
in a manner similar to Fig. 1. 

Fig. 2. 

i I 

iO-I  - -  

10-2 _ 

10-5 - -  

1074 - -  

10-5 - -  

I \ 1  I I 

8 9 

4 

I f 
�9 2 A .6 .8 t.O 1.2 1.4 

d 

Regions of the u - d  space in which [ l (v ) / (1  - v) j / 2 -  C ] / v  is found not  to be a 
series of Sfieltjes. 
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6. R A D I I O F  C O N V E R G E N C E  

We have formed estimates of the radii of convergence for the power 
series in v representing I ( v ) / ( 1  - @/2  for integer and noninteger d and 
u < 1. These estimates are based on 

(i) the "Cauchy method" 

R 1 for n large (6.1) 

(ii) the location of the pole of the [4/4] Pad6 approximant for 
I ( v ) / ( 1  - v )  1/2 closest to the origin in the v plane. 

In our work estimates based on (ii) were always smaller than those 
based on (i). We remark that if (2.15) were to hold for all n, but not 
necessarily (2.18), then (ii) would be a rigorous upper bound on the radius 
of convergence. As remarked in Section 5, for d > 1 and u < 0.15 such a 
case is possible (although we do not believe it to be likely), but in the other 
cases where (2.15) fails method (ii) is only an estimate. 

For 1 /2  < d < 1 and u ~<0.1 the radii of convergence can be said to 
be smaller than unity. The smaller u, the smaller the radius of convergence 
is: 

and 

if u ~ 0 . 0 1 ,  R < 10 -2 

if u~---0.0001, R < 10 .5 

based on the Pad~ method. In these cases the Cauchy method gives R < 0.6 
and R < 0.05, respectively. 

For d = 1 and u ~ 0.1 the radius of convergence is only slightly greater 
than unity. At d - -  1 a dramatic jump occurs in the radius of convergence 
from its values for d < 1. This jump is sharper for smaller u. 

For d > 1 and u ~< 0. i the radius of convergence first drops down to 
approximately the values it had for d just less than unity. Then it starts 
increasing with d (while u is held fixed) and it becomes approximately unity 
as d becomes 3/2.  

For 1/2 < d < 3 /2  and u > 0.1 the radius of convergence is estimated 
to be greater than unity. There the failure of the Yang-Lee theorem is due 
either to a loss of positivity of the density of zeros on the unit circle in the/~ 
plane or to their wandering from that circle. For u = 0.9, for example, our 
estimates lead to radii of convergence ~10 .  In the regions of u - d  space 
where the power series of interest are not series of Stieltjes, the pole of the 
[4/4] Pad6 approximant nearest the origin in the v plane is always accom- 
panied Very closely by a zero. When the series satisfy all the properties of a 
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series of Stieltjes with radius of convergence unity (for example, when 
d = 1) the pole and zero separate significantly. 

7. OPEN QUESTIONS 

In this section we try to organize the results of the previous two 
sections into a coherent picture. It is helpful in this effort to take note of 
some additional known results of potential relevance. First it is easy to 
show for the Gaussian model that the critical temperature and the suscepti- 
bility critical index ('f = 1) are analytic functions of d. Beyond this Fisher 
and Gerber (5) have shown that for 2 < d < ov the critical temperature of 
the spherical model is analytic in d, although the critical indices are only 
piecewise analytic, (26) 2 < d < 4, 4 < d <  oz. For  the renormalization 
group theory of the go:~ba:d model Brezin eta/ .  (6) have shown that the 
Borel transform of the c-expansion (see Section 4) has a finite radius of 
convergence. By the Borel transform we mean the following. Let 

oc 

F ( t )  = Fkt  k (7.1) 
k = 0  

be a formal power series. Define its Borel transform as 

 Ztk 
f ( t )  = k! (7.2) 

k = 0  

also as a formal power series. Then if the series (7.2) converges and f( t)  has 
an analytic continuation over the interval 0 < t < oo which does not grow 
too fast at t ~  oo, we give the Borel sum of (7.1) as 

F(t) = foo~e-~f(xt) dx (7.3) 

by use of the identity 

k! = foo~Xke- X dx (7.4) 

The proof that f ( t)  has a finite radius of convergence is a necessary first 
step to establishing the Borel summability of a formal power series (7.1). 
Also for the go : if4 : a field theory t 'Hooft  and Veltman (27) in their study of 
dimensional renormalization theory have shown that the perturbation series 
in go is analytic in d, term-by-term. Here Rivasseau and Speer (28) have 
again shown that the Borel transform has a finite radius of convergence, so 
at least the Borel transform is analytic in d. The go : ~4 : d theories obey the 
Yang-Lee theorem (29) and so are appropriate, for insight purposes, to our 
discussion. 
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It appears from our numerical work that the radius of convergence of 
the v series (and hence the/z series) decreases significantly below unity and 
possibly to zero for d noninteger and for any u < 1. P e r h a p s  the follow- 
ing physical idea is relevant to this problem. As we saw in Section 3, 
a D-dimensional hypercube, or for that matter an arbitrary portion of a 
D-dimensional hypercubic lattice is embeddable on a n y  d,  noninteger, 
dimensional lattice no matter how large D, nor how small d. N o w  on such 
a lattice fragment the energetically most favorable state is for anti- 
ferromagnetically aligned spins and, as we saw at (3.12), this state is not 
compensated by the z n factor and hence leads to a divergence of the series. 
Physically, we expect this effect to set in for u less than its antiferromag- 
netic critical value, but 

1 - u c = O ( 1 / D )  (7.5) 

so it could well dominate for any u < 1 as D can be indefinitely large. Bear 

+ 

I I I 

/ 
/ 

/ 

T c T t 

T 

I 
-r N 

Fig. 3, Illustration of a simple antiferromagnetic phase diagram, z = tanh K, ~1 = tanh h. ~u is 
the N~el point, (T t, -+~t) are the (possible) triple points. The solid curve is a line of 
second-order phase transitions and the dotted lines are lines of first-order phase transitions. % 
labels the location of the ferromagnetic critical point in our picture. 



On the Ferromagnetic Ising Model in Noninteger Spatial Dimension 715 

in mind that this effect could be destroyed by cancellation. If it is not, then 
there will be a strong tendency for our system to undergo an antiferromag- 
netic phase transition in nonintegral dimensions at any finite temperature. 

The usual critical point is in a state without staggered magnetization 
and in this picture would have to be considered a metastable state. In Fig. 3 
we have shown a typical antiferromagnetic phase diagram with the usual 
ferromagnetic critical point indicated. If our suggested picture is correct the 
phase boundaries would lie on the upper, right, and lower boundaries of the 
figure, but the singularities on these boundaries would vanish for d integer. 
The model for d noninteger in current parlance would resemble an Ising 
model with competing interactions and a degree of frustration. 

Except in integer dimensions the critical point computed by the 
c-expansion, for example, would be a spinodal point. Since spinodal points 
may be accessible (e.g., van der Waals gas), or may not be accessible (e.g., 
Ising model (3~ or droplet models (31)) to series methods, it appears to be a 
nontrivial and interesting question whether the work of Brezin e t  al. (6) and 
Rivasseau and Speer (28) can be extended to demonstrate Borel summability 
of the E-expansion and the fixed, noninteger dimension go expansion of the 
g0:~,4:d model field theory. The high-temperature expansion must pene- 
trate a line of second-order transitions and the high-field expansion proba- 
bly a line of first-order transitions (See Fig. 3). 
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